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Diffusion-based policies have recently achieved remarkable success in robotics by formulating action
prediction as a conditional denoising process. However, the standard practice of sampling from
random Gaussian noise often requires multiple iterative steps to produce clean actions, leading to high
inference latency that incurs a major bottleneck for real-time control. In this paper, we challenge the
necessity of uninformed noise sampling and propose Action-to-Action flow matching (A2A), a novel
policy paradigm that shifts from random sampling to initialization informed by the previous action.
Unlike existing methods that treat proprioceptive action feedback as static conditions, A2A leverages
historical proprioceptive sequences, embedding them into a high-dimensional latent space as the
starting point for action generation. This design bypasses costly iterative denoising while effectively
capturing the robot’s physical dynamics and temporal continuity. Extensive experiments demonstrate
that A2A exhibits high training efficiency, fast inference speed, and improved generalization. Notably,
A2A enables high-quality action generation in as few as a single inference step (0.56 ms latency),
and exhibits superior robustness to visual perturbations and enhanced generalization to unseen
configurations. Lastly, we also extend A2A to video generation, demonstrating its broader versatility
in temporal modeling. Project site: https://lorenzo-0-0.github.io/A2A _Flow_ Matching.
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1 Introduction

Recent advances in imitation learning architectures have significantly expanded the capabilities of robotic
systems operating in complex and unstructured environments (Ai et al., 2025). Among these, diffusion-based
policies (Ho et al., 2020; Lipman et al., 2022; Chi et al., 2025; Intelligence et al., 2025a) have emerged as
a powerful paradigm for modeling the intrinsic multi-modality of human demonstrations. These methods
formulate action generation as a conditional denoising process: during training, a neural network learns to
predict injected noise, while at inference time, control actions are obtained by iteratively denoising samples
initialized from random noise into executable trajectories.

Despite their strong empirical performance on high-precision and multi-modal tasks, diffusion models suffer
from a well-known limitation: the “denoise-from-scratch” paradigm incurs substantial inference latency (Pan
et al., 2025). Generating a single action typically requires dozens of iterative denoising steps, creating a major
bottleneck for real-time robotic control, where low cycle time and rapid feedback are essential for stable
execution. To mitigate this limitation, prior work has explored improving the initialization of the diffusion
process to accelerate inference. For instance, Wagenmaker et al. (2025) propose an RL-trained policy to steer
the initial sampling distribution, while Scholz and Turner (2025) employ warm-start strategies to identify
more informative starting points. These approaches replace uninformed Gaussian noise with priors closer to
the data distribution, often through auxiliary models that predict distributional statistics conditioned on the
current observation. While effective, such approaches still rely on stochastic noise initialization and inevitably
introduce additional modeling complexity.

This observation raises a more fundamental question: do robotic policies truly need to be generated by sampling
from random noise? Diffusion models were originally developed for high-fidelity image synthesis and video
generation (Ho et al., 2020; Song et al., 2020a; Rombach et al., 2022; Lipman et al., 2022; Liu, 2022; Blattmann
et al., 2023), where generation typically begins from uninformed noise due to the absence of meaningful
priors. Robot control, however, operates under a fundamentally different regime. Modern robots are equipped
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Figure 1 Comparison of robotic policy paradigms. (a) Regression Policy: Deterministic mapping from multi-modal inputs
to actions. (b) Diffusion Policy: Generative modeling via iterative denoising from Gaussian noise. (c) A2A Policy:
Informed action generation through a structured flow between historical and future actions. Action-to-action allows
for more efficient transport than noise-to-action, enabling one-step flow mapping feasible even with a lightweight MLP
architecture.

with rich proprioceptive and state sensors that provide continuous, low-latency feedback about the system’s
configuration and dynamics (Jia et al., 2025b, 2026). This structured feedback constitutes a strong and
reliable prior, naturally encoding both the robot’s current physical state and recent execution history, and
thus offers a principled alternative to random noise initialization for action generation (Jia et al., 2025a).

However, as shown in Fig. 1 (a) and (b), most existing approaches adhere to either regression- or diffusion-based
paradigms that condition action generation on a simple concatenation of the current proprioceptive state
and visual observations. Such designs overlook the temporal continuity intrinsic to robotic motion and often
dilute low-dimensional proprioceptive signals when fused directly with high-dimensional visual representations.
Moreover, recent studies show that explicit conditioning on instantaneous proprioceptive states can adversely
affect spatial generalization (Zhao et al., 2025a). Consequently, rich historical information about system
dynamics and action trends remains largely underexploited in prevailing frameworks. Notably, diffusion
models define mappings between probability distributions rather than individual states. This perspective
motivates a natural question: can the inherent proximity between distributions of past executions and future
actions be exploited to reduce learning complexity, yielding a shorter and more stable transport path for
policy generation?

To this end, we propose Action-to-Action Flow Matching (A2A), a novel flowing matching-based policy
paradigm that shifts action generation from uninformed sampling to informed initialization. Unlike prior
approaches that initialize the diffusion process with standard Gaussian noise, A2A directly leverages a
sequence of historical proprioceptive actions as the starting point for action generation, as illustrated in
Fig. 1. To capture subtle motion patterns and temporal dependencies, these low-dimensional action histories
are embedded into a high-dimensional latent space. By learning a flow that transports historical action
distributions to future actions, A2A bypasses the costly iterative denoising process from Gaussian noise. We
evaluate A2A extensively in both simulated environments and real-world robotic systems. Empirically, our
method exhibits remarkable training efficiency and consistently outperforms 8 state-of-the-art baselines. In
particular, A2A achieves significantly faster training convergence, i.e., up to 20x and 5x faster than vanilla
diffusion and flow matching methods, respectively, while enabling high-quality action generation in as few as
a single inference step. Moreover, grounding the generation process in proprioceptive history substantially
improves robustness to visual perturbations, and the history-informed initialization enhances generalization
to unseen configurations by enforcing physical consistency over time.

In summary, we introduce a new diffusion-based robot policy paradigm that replaces stochastic noise
initialization with history-based proprioceptive initialization, enabling informed action generation grounded in
the robot’s own dynamics. Leveraging latent state representations, A2A captures fine-grained motion structure
and supports efficient action-to-action transitions without iterative denoising from random noise. Extensive
experiments in both simulated and real-world robotic environments demonstrate that our method achieves
state-of-the-art performance across training efficiency, inference speed, robustness to visual perturbations, and



generalization to unseen configurations. Furthermore, we showcase the applicability of A2A in robotic video
generation, suggesting promising potential for broader scalability.

2 Related work

2.1 Visuomotor policy

Visuomotor policy is a robot learning framework that maps raw sensory observations, typically high-dimensional
visual inputs and low-dimensional robotic states, directly into low-level control actions. Early approaches,
such as action chunking (ACT) (Zhao et al., 2023), utilized a conditional variational autoencoder with
Transformers (Vaswani et al., 2017) to learn fine-grained bimanual manipulation by predicting future action
sequences. While effective for precision tasks, ACT often struggles to capture highly complex and multi-modal
distributions. Diffusion policy (Chi et al., 2025) introduced a diffusion generative paradigm by modeling the
action distribution as a score-based gradient field (Ho et al., 2020; Song et al., 2020b), significantly improving
stability in multi-modal environments. Flow matching (Lipman et al., 2022) used in Vision-Language-Action
(VLA) models, like 7 family (Intelligence et al., 2025a,b; Black et al., 2024), has sought to simplify the
generative process by learning straight-line probability paths between noise and action distributions. More
recently, Pan et al. (2025) suggest that the selection of advanced model architectures (e.g., DiT (Peebles and
Xie, 2023) and UNet(Chi et al., 2025)) and action chunking strategy (Zhao et al., 2023) has a more significant
impact on the success of flow matching than the regression method.

Despite these successes, diffusion methods suffer from high computational costs due to their iterative multi-step
inference nature and the complex architectures. Conversely, the vision-to-action model (VITA) (Gao et al.,
2025) pursues architectural minimalism by employing a lightweight Multi-Layer Perceptron (MLP) backbone
for direct vision-to-action mapping. However, VITA relies completely on visual inputs, making it vulnerable to
environmental visual distractors. Furthermore, VITA still necessitates a 6-step iterative inference process to
produce stable actions. One-step inference has been widely explored in image generation (Lu et al., 2026; Geng
et al., 2025b; Kornilov et al., 2024), yet it remains significantly underexplored in robotics. A2A addresses these
limitations by leveraging the physical continuity of actions to enable high-performance single-step generation.

2.2 Noise optimization of diffusion

In image and video synthesis, optimizing initial noise is a key strategy for enhancing generation quality and
speed (Ahn et al., 2024; Mao et al., 2024; Samuel et al., 2024; Eyring et al., 2024; Scholz and Turner, 2025). For
example, Ahn et al. (2024) eliminate the need for computationally expensive guidance techniques by learning
to map standard Gaussian noise to a guidance-free noise space through a lightweight LoRA module (Hu et al.,
2022). Similarly, warm-start diffusion (Scholz and Turner, 2025) utilizes a deterministic model to provide an
informed mean and variance of the initial Gaussian distribution based on context, reducing the sampling
path. In robotics, however, noise optimization is rarely explored. Wagenmaker et al. (2025) adapts behavioral
cloning policies by running reinforcement learning over the latent-noise space, allowing the agent to steer
robot actions without altering the base policy weights.

Unlike these methods tethered to the noise-to-data paradigm, which necessitates long transport paths and
costly iterative sampling, our A2A introduces an action-to-action transport mechanism. By directly employing
clean historical data as the initial distribution, we leverage the physical continuity of robotic motion to place
the starting point much closer to the target in the high-dimensional latent space. This reduced distributional
gap bypasses the need for multi-step refinement, enabling high-fidelity single-step inference optimized for
real-time robotic control.

3 Action-to-action flow matching

3.1 Flow matching

We adopt flow matching (Lipman et al., 2022) as the algorithmic foundation, given its widespread adoption
in the robotics field (Black et al., 2024; Intelligence et al., 2025a; Bjorck et al., 2025). Flow matching is a



simulation-free generative model that learns to transform a Gaussian distribution xo ~ N(0,1I) into a complex
target distribution x; ~ X;. Consider a time-dependent probability density p, : X — Rsq for 7 € [0, 1] that
defines a probability path. This path describes how a source distribution pg evolves into a target distribution
p1- This evolution is governed by a time-dependent vector field v, : X — X through the following ordinary
differential equation (ODE)

dx,

dr = VT(XT)7 (1)

where x, represents the state at flow time 7.

The optimal transport displacement map (Lipman
et al., 2022) is adopted, which is formalized as
x; = (1 — 7)x¢ + 7x1. The goal is to train a
neural network fy(x,, 7, c) parameterized by 6 to
approximate the conditional vector field, where c
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With the learned vector field fp(x,, T, c), sampling  Figure 2 Overview of A2A architecture. The framework con-
in the inference phase is usually conducted via sists of three main components. 1) A condition path that
discretized Euler integration. encodes visual observations using a ResNet-18 backbone
and a linear projector to generate a global condition c. 2)
A source path that employs a CNN with a 5 kernel size to
compress the n-frame history actions into a latent starting
point zg. 3) A flow-based generation process. The flow net,
built with AdaLN-MLP blocks, predicts the vector field to
transport zo to the target latent z; within a unified 512-
dimensional latent space. Finally, a residual MLP decoder
transforms z; into the future action sequence.

3.2 Actionto action flow

Different from previous diffusion-based polices that
denoise from Gaussian distributions (Ho et al.,
2020; Lipman et al., 2022; Chi et al., 2025), A2A
aims to learn a policy from a historical action space
to a future action space, as depicted in Fig. 1(c).
Note that the action a is user-defined and can
represent joint angles, end-effector states, or their
respective velocities. We chose the joint angles in simulation and the end-effector states in experiments.
Given historical actions a<; = {a;—n41,...,a:}, visual observations I<; = {I;_,41,...,1:}, next actions
as: = {at11,...,8¢4n}, where n and m represent the action and observation horizons, respectively. The A2A
framework transforms the distribution of historical actions directly into the distribution of future actions via
a conditional flow in a shared latent space Z.

Fig. 2 details the A2A architecture. Concretely, the proposed architecture leverages a Convolutional Neural
Network (CNN)-based autoencoder to map action trajectories into a compact latent space Z. Specifically,
the action encoder E, and decoder D, parameterize the mapping zgp = F,(a<;) and the reconstruction
as+ = Dy(z1). Simultaneously, the visual encoder E; extracts features from multi-modal image streams
I<,, which are further projected via an MLP to form a global conditioning vector ¢ = MLP(E;(I<;)).
Finally, we define the action-to-action flow in Z via a time-dependent vector field v, that satisfies the ODE
dz. /dT = v.(z,) for T € [0,1].

Due to the physical consistency of sequential robot motions, adjacent action chunks exhibit inherent similarity.
By further embedding these segments into a high-dimensional latent space and training with flow matching,
the distribution of the starting point zq is well aligned with the target z; (see Figs. 8 and S6). This reduction
in distributional distance drastically simplifies the transport mapping, enabling a lightweight MLP architecture
to attain strong performance even with single-step inference.

Note that historical actions a<; can also be corrupted with subtle noise to introduce stochasticity. In the
presence of action-level uncertainties, the performance of A2A is compromised due to its inherent dependence
on preceding action sequences. Injecting subtle stochastic perturbations into the historical actions prior to
the encoding stage can substantially enhance its generalization capability against such uncertainties. Section
4.3.2 provides empirical evidence supporting the effectiveness of this mechanism.



3.3 Learning objectives
The total training objective Lt is formulated as a multi-task loss to ensure generation accuracy and physical

consistency simultaneously.

Flow matching loss The primary objective is the regression of the time-dependent vector field fy(z,, 7, c) in
the latent space Z. This loss ensures that the model learns the optimal transport path between the starting
point zg and the target zq, i.e.,

Lrm =Eri01],20.2 |1 fo(2r,7,€) = v (27,7, o)l?. (3)

Autoencoder reconstruction loss To ensure that the latent space Z preserves the topological structure of the
action space, we apply an ¢; reconstruction loss to the action autoencoder, i.e.,

Lap = Ea., asi — Da(Balas)l, @

This loss regularizes the encoder E,; and decoder D, to maintain high-fidelity reconstruction of action chunks.

Inference consistency loss To bridge the gap between abstract latent generation and physical execution,
inspired by Gao et al. (2025), we introduce inference consistency loss. The inference consistency aims to align
ODE-inferred and ground truth actions in both latent space and original action space, i.e.,

Lro = Espa, 121 = Ea(@so)lly + Mz as, [Dal21) —asely (5)

where z; is the latent vector obtained via ODE integration and Ay € R+ denotes a user-defined weight. This
objective ensures that the generated flow trajectories translate into physically meaningful and executable
robot actions. Gao et al. (2025) have found that L;¢ is critical for avoiding latent space collapse.

Finally, the total training objective L;y44; is formalized with three weighting coefficients A1, A2, and A3 € R+

Liotal = MLrm + XoLap + X3Lic. (6)

4 Evaluation

Table 1 Success rates across 5 simulation tasks under 9 different algorithms (100 demonstrations, 30 epochs). The best
results are highlighted in bold, while the second-best results are indicated with underlines.

Methods Steps Close Box Pick Cube Stack Cube Open Drawer Pick-Place Bowl
(%) (%) (%) (%) (%)
A2A 6 92 92 86 92 90
VITA 6 88 88 80 90 92
FM-UNet 10 82 70 28 34 68
FM-DiT 10 58 88 26 28 84
DDPM-UNet 100 72 60 36 64 66
DDPM-DiT 100 58 58 16 14 68
DDIM-UNet 40 70 56 36 64 82
Score-UNet 100 36 36 12 0 4
ACT 1 82 86 32 80 60

We conduct a comprehensive evaluation of the proposed A2A across 5 simulational tasks (Stack Cube and
Pick Cube from ManiSkill (Mu et al., 2021), Close Box from RLBench (James et al., 2020), Open Drawer
and Pick-Place Bowl from LIBERO (Liu et al., 2023)) in Roboverse platform (Geng et al., 2025a) and 2
real-world tasks (Pick Cube and Open Drawer) on Franka robot, as shown in Fig. 3, Fig. 5, and Fig. 6. Our
performance is benchmarked against eight state-of-the-art baseline methods, including DDPM-UNet (Chi
et al., 2025; Ho et al., 2020), DDPM-DiT (Ho et al., 2020; Peebles and Xie, 2023), DDIM-UNet (Chi et al.,
2025; Song et al., 2020a), FM-UNet (Lipman et al., 2022), FM-DiT (Lipman et al., 2022; Peebles and Xie,
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Figure 3 Simulational tasks. Simulations are conducted in the Roboverse platform (Geng et al., 2025a). Implementary
tasks include Stack Cube and Pick Cube from ManiSkill (Mu et al., 2021), Close Bozx from RLBench (James et al.,
2020), Open Drawer and Pick-Place Bowl from LIBERO (Liu et al., 2023)). For the last two tasks, the camera is
repositioned further back compared to the initial setup. This degrades the clarity of the captured visual input, thereby
augmenting the overall task difficulty.

2023), Score-UNet (Song et al., 2020b), ACT (Zhao et al., 2023), and VITA (Gao et al., 2025). To ensure a
fair and rigorous comparison, we have standardized the hyperparameters (e.g., chunk size, batch size) and
network scales across all evaluated methods to the greatest extent possible. The following evaluation primarily
focuses on training efficiency, inference cost, and generalization performance. The training hyperparameters
are summarized in Table S1.

4.1 Training efficiency

We first analyze the performance of A2A
across different training data sizes and epoch

numbers. Fig. 4 illustrates the training ef- Traurlnng corvergene Sanllng euff ey
ficiency of all evaluated methods. As illus- ~\;100_ ] ’\;100- ]
trated in Fig. 4 (Left), A2A demonstrates su- S <
perior convergence speed compared to DDPM- T 80 {®
UNet and FM-UNet, achieving a stable 100% g g 307 e on ]
success rate within significantly limited 40 2 60 13 —e— FM-UNet
training epochs on the Close Boz task. —A— DDPM-UNet

0 ‘
Furthermore, the sampling efficiency results 0 slo 150 1;30 0 elo 150 1;;0
in Fig. 4 (Right) reveal that A2A quickly Epoch Demonstration number
reaches and maintains a high performance
ceiling as the number of demonstrations in- Figure 4 Training efficiency test. Left: Success rates across varying
creases. In contrast, both DDPM-UNet and training epochs (using 100 demonstrations in Close Boz task).
FM-UNet exhibit noticeable fluctuations and Right: Success rates across varying demonstration numbers (fixed

lower stability. This discrepancy likely stems at 100 epochs in Stack Cube task).

from the increasing trajectory diversity in the

increasing dataset of the Stack Cube task, which may require higher model capacity or extended training
epochs to accommodate. To validate this hypothesis, we conduct further evaluations on the DDPM-UNet
and FM-UNet baselines. As illustrated in Fig. S3, their success rates gradually converge to 100% as training
epochs increase.

Real-world test in Fig. 5 (a) and Fig. 6 (a) further shows that with only 30 training trajectories, A2A-
Flow achieves a 100% in-distribution success rate, outperforming DDPM-UNet and FM-UNet. Fig. 6 (b)
further illustrates that in the Open Drawer task, the proposed algorithm achieves a shorter completion time,
whereas DDPM-UNet and FM-UNet exhibit significant hesitation during the operation. Moreover, we further
implement a pick-up location test. Two additional pick-up locations are added (Fig. 5 (c)), each with only 10
demonstrations. A2A demonstrates rapid adaptation and high success rates, showcasing its superior data
efficiency in novel scenarios. Even at the edge of the field-of-view (FOV) (bottom-right location, Fig. S1),
A2A sustains a viable success rate, underscoring its robustness to suboptimal visual inputs. These simulation
and real-world results indicate that the proposed A2A policy achieves superior performance, particularly in
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Figure 5 Experimental results of Pick Cube task. (a) Policies are trained on a limited dataset of 30 trajectories for 100
epochs. During evaluation, each method is tested over 10 trials. (b) Generalization capability is further challenged by
replacing the target with an unseen glowing block. (c) Pick the cube from different locations with a limited 10 training
demonstrations.

regimes characterized by limited training data and fewer training epochs.

The quantitative results across 5 different
tasks and 9 algorithms are summarized in
Table 1. A2A consistently achieves the high-
est success rates. VITA, which similarly in-
corporates an inference consistency mecha-
nism (Gao et al., 2025), also achieves a com-
petitively high success rate. Notably, we
find that given advanced transformer archi-
tectures and identical hyperparameters (e.g.,
chunk size, batch size), regression-based ACT
achieves performance comparable to diffusion-
based methods. This observation aligns with
recent findings by Pan et al. (2025).
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N
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4.2 Inference cost Figure 6 Experimental results of Open Drawer task. Policies are
Capitalizing on the inherent efficiency of flow trained on a limited dataset of 30 trajectories for 300 epochs.
matching, we further examine the extreme Time cost denotes the total time elapsed during task completion.
inference speed achievable by the A2A policy. Success rate is evaluated over 10 trials.

We first evaluate the impact of sampling steps

on training performance. As shown in Fig.

7 (Left), increasing the number of inference

steps leads to a rapid improvement in success rates; however, the marginal gains diminish significantly beyond
4 steps. Regarding Fig. 7 (Middle), when the inference budget is restricted to only one step, the success rate
begins to rise above 90% substantially after 32 training epochs.

Fig. 8 visualizes the convergence of latent space representations under the one-step inference during training.
We employ t-SNE to jointly embed history and future action latents, with paired samples connected by lines
to represent the learned flow. As training progresses, the average distance between the history and future
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Figure 7 Inference cost test. Setting: Close Boz. Left: Success rate over inference steps with fixed 30 epochs. Middle:
Success rate over training epochs with only one-step inference. Right: Mean inference time per sampling step for all
evaluated models, benchmarked on an identical hardware to ensure fairness.
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Figure 8 Convergence of latent space representations during A2A training. Settings: Close Box, one-step inference. We
apply t-SNE to jointly embed history and future action latents, with paired samples connected by lines. Line colors
indicate distances computed in the 512-dimensional latent space.

action chunks in the latent space decreased significantly. Furthermore, the trajectories connecting these pairs
increasingly align into parallel paths. These phenomena provide strong empirical evidence for the feasibility

of single-step flow mapping from history to future latents, while the emerging parallelism underscores the
rectilinearity of the learned flow.

Furthermore, we benchmark the mean inference time per sampling step across various algorithms on identical
hardware (NVIDIA GeForce RTX 5090 GPU with 32GB VRAM), as depicted in Fig. 7 (Right). Attributable
to the extreme compressibility of sampling steps and the efficient MLP-based architecture, the inference
latency of A2A is maintained below 1 ms. Notably, in the single-step inference regime, the latency reaches an
impressive 0.56 ms, indicating significant potential for tasks that demand high-frequency decision-making.

Note that A2A and VITA (Gao et al., 2025) exhibit superior inference speed compared to regression-based
ACT (Zhao et al., 2023). Beyond the reduced number of sampling epochs, this efficiency also stems from
the pure MLP operations in the latent space. Conversely, ACT in this work utilizes a cost Transformer
architecture with self-attention and cross-attention mechanisms.

4.3 Generalization performance

4.3.1 Visual uncertainty

We further evaluate the generalization performance of the proposed A2A policy under various visual uncer-
tainties. Roboverse (Geng et al., 2025a), the adopted platform, categorizes the scene randomizations for the
Close Box task into four progressive levels of difficulty. Level 0 serves as the training dataset, involving initial
box pose variations (see Appendix Fig. S4). Level 1 introduces significant background textures randomization



Table 2 Comparison of success rates across 4 different randomization scenes. All models are trained with 100
demonstrations for 200 epochs in Level 0. The best results are highlighted in bold, while the second-best results are
indicated with underlines.

Methods Level 0 Level1 Level2 Level3
%) (%) ) (%)
A2A (1step) 100 20 16 22
A2A (6 steps) 100 38 42 38
VITA 100 4 2 2
FM-UNet 96 6 6 4
DDPM-UNet 92 2 4 2
Score-UNet 94 0 2 0
ACT 86 8 2 0

(see Appendix Fig. S5), while Level 2 adds illumination perturbations. Finally, Level 3 incorporates camera
viewpoint variations. Detailed randomization configurations are provided in the Appendix A.1.

Table 2 presents the success rates of evalu-
ated methods across Levels 0 to 3. Notably,

R Varied initialization test Varied noise test
even when encountering Level 1-3 for the first 100 17 T ™ 1004 T ]
time, A2A (6 steps) malptams a robust suc- 93 sto-=01 | Initiflougger;tzintv
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. . . =
ing all baseline methods. In the single-step © o
. . . . «»n 504 4 « 504 =
inference regime, A2A continues to exhibit a @
superior generalization compared to other al- S —=— FM-UNet S
gorithms. We also verified its visual gener- < T DDPMAUNet T VITA | )

. . A2A ——N-A2A
alization performance in real-world tests, as 0-— T T 0-— T .
shown in Fig. 5. We substitute the targeted 0.00 0.04 0.08 0.0 0.5 1.0
cube with an unseen glowing variant, induc- Initial state uncertainty (rad) STD of added noise

ing severe visual distractors. The FM-UNet

and DDPM-UNet baselines fail entirely in Figure 9 Generalization test on different initiation. Left: Success

this case, whereas our algorithm sustains a rate under varying levels of initial state uncertainty. Settings:

robust 80% success rate. Close Boz, 30 epochs, 100 demonstration numbers. Noised A2A
(N-A2A) refers to the initial action distribution occupied by 0.1

We argue that the fundamental reason for this STD Gaussian noise. Right: Success rate under varying levels of

robustness is our decoupled strategy, lighten-  initial noise. The initial state uncertainty is set as 0.08 rad.

ing the representation entanglement problem

(Li et al., 2026). Unlike conventional methods

that simply concatenate proprioceptive and visual features, we process them through distinct strategies,

thereby enabling the model to leverage the complementary strengths of each modality more effectively.

Specifically, grounding the generation process in historical actions can substantially improve robustness to

visual perturbations, which enforces physical consistency over time.

4.3.2 |Initial state uncertainty

Given the temporal dependency of subsequent action sequences on previous ones in A2A; a natural question
arises regarding its robustness to uncertainties in the historical sequence. To investigate this, we randomize the
initial pose of the robot, as illustrated in Fig. S7. The results in Fig. 9 (Left) indicate that the A2A, compared
to baselines, which generate actions from pure noise at each step, is indeed more sensitive to uncertainties
within the action history. However, by injecting a small amount of Gaussian noise (0.1 standard deviation,
STD) into the historical actions, it can be observed that a significant boost in generalization performance is
achieved. Fig. 9 (Right) further depicts the relationship between the success rate and the intensity of the
injected noise. How to optimally fuse clean historical data with Gaussian noise to balance determinism and
stochasticity remains a compelling direction for future research.



5 Ablation study

We further conduct ablation studies on the architectural design to answer two fundamental questions: whether
the generative paradigm provides superior performance over the deterministic regression baseline; whether
performing flow matching within the latent space is more effective than directly in the raw action space.

5.1 Regression or generation

There is a growing discourse regarding
the relative merits of generation versus

L . Structure ablation Generalization performance
regression in the context of robotic con- 100l 9, 98 100 .
trol (Pan et al., 2025). Here, we also X S —&— Flow-latent
attempt to substitute the flow matching g /0 56 £ —®— Reg-latent
objective with a deterministic regression @ 50 o 20
approach. To ensure a fair comparison, 3 3
all other architectural components, in- 3 3 ol
cluding the encoder and the latent space 0 T ' T T
configuration, remain strictly identical. /(7014,\ y '?Gg\,e 'C/Op,,\e 'C/oh,\e (GV@/O (@u@/l (@1/@/2 ‘5'1/@/3
The results are presented in Fig. 10 Ve, “ng RIS
(Left), where Flow-latent denotes the ey K2

flow matching performed within the la-

tent space, i.e., our final choice. Reg- Figure 10 Ablation study of model structure. Settings: Close Boz, 30

latent represents deterministic regres- epochs, 100 demonstration numbers, 6 inference steps for flow-based
sion performed within the latent space. methods. Left: Impact of learning objectives and representation spaces.
We found that both methods achieve Comparison of flow matching and regression strategies implemented
high success rates on the training distri- in both latent and raw action spaces. Right: Generalization capabil-
bution, which aligns with recent findings ity. Robustness comparison between latent-space regression and flow

by Pan et al. (2025). However, Fig. 10 matching under varying environmental perturbations.

(Right) reveals that the generative ap-

proach exhibits significantly higher resilience to environmental perturbations, whereas the regression variant
fails to generalize to unseen scenarios. This gap might stem from the decoupling of action and visual inputs.
Direct combination with higher-dimensional visual representations for the regression method may dilute the
benefits of low-dimensional proprioceptive signals.

5.2 Action space or latent space

We further evaluate flow matching performed without the latent space, using both U-Net and MLP (same as
A2A) backbones. The results are shown in Fig. 10 (Left), where Flow-action-UNet represents flow matching
directly in the raw action space using a U-Net architecture, and Flow-action-MLP denotes flow matching
directly in the raw action space using an MLP architecture. It can be seen that flow matching in the raw
action space leads to inferior convergence performance compared to the latent-space approach. This reason
can be attributed to the high-dimensional representation in the latent space, which effectively aligns the
initial and target distributions of the flow. This structured alignment facilitates a smoother learning process,

enabling the model to achieve high performance even within a single-step inference regime, as shown in Figs.
8 and S6.

6 Application to video generation

Similar to robotic manipulation, video generation in the form of future frame prediction is inherently a temporal
continuity task. High-fidelity future video prediction can enhance the performance of VLA models (Zhao
et al., 2025b; Deng et al., 2026). This work further explores the transferability of the A2A paradigm to video
generation, hereafter referred to as Frames-to-Frames flowing matching (F2F). The training dataset comprises
100 videos for each level (Levels 0—4) of the pick cube task, while the test set consists of four unseen scenarios
in the same task. F2F is designed to predict three future frames based on a history of three consecutive
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Ground truth

PSNR (dB) 1 ssim MSE | LPIPS
F2F 23.6165 0.5969 0.0047 0.3478
Baseline 20.2188 0.4886 0.0101 0.5647

Figure 11 Video generation results. The predicted third frames in four different unseen scenarios are visualized.

frames. Both F2F and baseline are trained with 500 epochs. See Appendix A.4 for implementation details.
As illustrated in Fig. 11, F2F achieves significantly higher generation quality compared to a regression-based
baseline implemented under the same network configuration. While these results are achieved with a small-
scale model, the F2F paradigm possesses significant scaling potential for larger architectures. Future work
will further pursue the integration of predicted video into the policy architecture to further augment the
performance of A2A.

7 conclusion

This paper introduces A2A, an efficient generative paradigm that replaces noise-based initialization with
action-to-action transport. By leveraging the physical consistency of sequential motions, A2A aligns starting
and target distributions, enabling a lightweight MLP to achieve high success rates with minimal latency. This
approach effectively eliminates the computational bottlenecks typical of diffusion-based policies. Beyond
robotics and video generation, the framework is inherently suited for diverse continuous temporal tasks, and its
potential in domains characterized by sequential continuity remains a promising avenue for future exploration.

8 Limitation

The inclusion of inference consistency loss (Lrc, Eq. (5)) necessitates ODE integration during training,
which constrains sampling to a fixed step size. While this sacrifices some flexibility compared to vanilla flow
matching, we find that £;¢ is indispensable for latent-space flow and serves as a cornerstone for enabling
single-step inference. For scenarios where implementing £;¢ is infeasible, our experiments demonstrate that
direct action-space flow matching remains a viable alternative, albeit at the cost of the single-step advantage.
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A Appendix

A.1 Randomization level setting

To systematically evaluate the robustness of evaluated methods, we utilize Roboverse’s hierarchical generaliza-
tion levels by introducing stochastic perturbations to the simulation environment. This section details the
configuration of Level 0 (object randomization), Level 1 (+background randomization), Level 2 (+lighting
randomization), and Level 3 (4camera viewpoint randomization).

Level 0 introduces the randomization of initial object positions, as illustrated in Fig. S4. It serves as the
training set for the evaluated algorithms.

Level 1 primarily focuses on the randomization of the environmental background, as illustrated in Fig. S5.
This level is designed to evaluate the policy’s robustness against non-task-relevant visual distractors.

Level 2 further adds lighting randomization. We randomize illumination using primary DiskLights (12k-
45k intensity), auxiliary SphereLights (5k-20k intensity), and ambient presets. Parameters include color
temperatures from 2500K to 6500K, directional jitters of £15° for ceiling lights, and sphere light positional
offsets of £0.5m (lateral/longitudinal) and £0.3 m (vertical) to create diverse shadowing patterns.

Level 3 implements camera viewpoint randomization additionally. Camera extrinsics are perturbed using a
uniform distribution within a delta range of £20cm for lateral /longitudinal shifts. Vertical shifts are restricted
to an upward range of 0 to 10 cm.

A.2 Hyperparameters

Training hyperparameters used in all simulations and experiments are set to the same, as shown in Table
S1. Note that the standard ACT implementation on the Roboverse platform comprises approximately 60M
parameters, nearly double that of DDPM-UNet (a~ 28M). To ensure a fair comparison, we have modified
the Transformer backbone of ACT to halve its parameter count, thereby aligning the model scales across all
evaluated baselines.

Table S1 Training hyperparameters.

Hyperparameters Value

n 8
m 8
Ao 0.5
A1 1
Ao 0.5
A3 1
Batch size 32

A.3 Experimental setup

In real tests, we deploy A2A on a Franka robotic platform, maintaining complete consistency in training
parameters with our simulation baseline. A key distinction from the simulation environment is the utilization
of dual-view visual input, the setup of which is shown in Fig. S1.

A.4 Video generation

Fig. S2 illustrates the architectural framework of the F2F algorithm, showcasing the transition from historical
frame sequences to future predictions. Historical frames I<; are encoded into a 512-dimensional latent space
using a ResNet18 backbone and a VAE head to obtain the initial state zg. A Flow Net Transformer, consisting
of 4 layers and 4 attention heads, learns the vector field v to map zy to the target latent z;. The future frames
I-; are then reconstructed through a 5-layer convolutional upsampling decoder. We employ a deterministic
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Figure S1 The camera views in real tests.
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Figure S2 Overview of F2F architecture for video prediction. The model leverages a ResNet-VAE architecture to compress
historical observations into a latent space, where a Transformer-based flowing matching computes the transport to
future states. The predicted sequence I is generated via a convolutional upsampling block.

regression model as the baseline, which predicts future frames directly from historical sequences. For a

fair comparison, aside from the omission of the flow-matching training objective, the baseline maintains an
architecture identical to F2F.

During evaluation, the predictive performance is assessed using four complementary metrics: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Mean Squared Error (MSE), and Learned
Perceptual Image Patch Similarity (LPIPS).
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Figure S3 Additional test on training efficiency of DDPM-UNet and FM-UNet.
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Pick Cube Close Box

Stack Cube

Figure S4 Randomization Level 0. Level 0 introduces the randomization of initial object positions. It serves as the
training set.

Level #0 Level #1

Figure S5 Randomization Level 1. Level 1 primarily focuses on the randomization of the environmental background.
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(a) Latent space convergence of Pick Cube
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Figure S6 Convergence of latent space representations in Pick Cube and Stack Cube tasks. We apply t-SNE to jointly embed
history and future action latents, with paired samples connected by lines. Line colors indicate distances computed in
the 512-dimensional latent space.

Original Randomized
“¥

1

oS

Figure S7 Initial state uncertainty. We randomize the initial pose of the robot to investigate the generalization performance
under action-level uncertainty.
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